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Abstract   In this paper we propose a logic-based, framework inspired by artificial 

intelligence, but scaled down for practical database and programming applications. 

Computation in the framework is viewed as the task of generating a sequence of state 

transitions, with the purpose of making an agent’s goals all true. States are represented 

by sets of atomic sentences (or facts), representing the values of program variables, tuples 

in a coordination language, facts in relational databases, or Herbrand models.  

   In the model-theoretic semantics, the entire sequence of states and events are 

combined into a single model-theoretic structure, by associating timestamps with facts 

and events. But in the operational semantics, facts are updated destructively, without 

timestamps. We show that the model generated by destructive updates is identical to the 

model generated by reasoning with facts containing timestamps. We also extend the 

model with intentional predicates and composite event predicates defined by logic 

programs containing conditions in first-order logic, which query the current state.  
 

Keywords: State Transition Systems, Reactive Systems, Composite Event Processing, 

Model Generation, Frame Problem. 

 

§1  Introduction     
   In this paper, we present a computational framework that uses logic for 

state transition systems.  Although the approach has its origins in research 

about representing and reasoning about states, actions and events in artificial 

intelligence, it has been scaled-down to make it suitable for more conventional 

computer applications. It builds on logic programming, but includes imperative 

language features, including reactive rules and destructive change of state. 

  In earlier versions29, 30, 31, 32) of this work, we referred to the framework as 

LPS, to highlight its focus on providing a Logic-based approach to Production 

Systems. In this paper, for the sake of continuity, we retain the name LPS, 

although the intended applications of the approach have been extended 

considerably.  These applications include its use for agent programming, active 

databases, concurrent systems, and composite (or complex) event processing.  

   The paper is organised as follows: Section 2 presents an overview of the 

framework, and Section 3 illustrates the framework by means of examples. 

Section 4 defines the language more formally, and Section 5 presents the 

operational semantics and discusses our implementations. Section 6 discusses 

soundness and completeness. In particular, it shows that destructive updates in 

LPS generate the same models as the frame axiom. Sections 7 and 8 discuss 

related and future work. 

  Compared with earlier papers, the main contributions of this paper are 

its more rigorous treatment of the semantics of reactive rules and logic programs 
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with conditions in first-order logic (FOL), and its demonstration of the 

relationship between the frame axiom and destructive updates. We also present 

a preliminary approach to the treatment of concurrent events. 

 

§2  Overview     

 
2.1   The Language 
 An LPS framework is a state transition system, specified by a tuple     

<R, L, D> consisting of a set R of reactive rules, a logic program L, and a domain 

theory D, which specifies the preconditions and postconditions of state 

transitions. States Si are represented by sets of atomic sentences, called facts or 

fluents. States are like relational databases, but also like program variables or 

tuples in a coordination language9). State transitions take place as the result of 

event occurrences. 

  The reactive rules R have the form X [antecedent  Y consequent], 

where antecedent and consequent are both conjunctions of state conditions 

expressed in first-order logic, state transforming events and temporal 

constraints. Reactive rules generalise condition-action rules in production 

systems, plans in BDI agents, and triggers in active databases.  

  Here is a simple example, where the variables T1, T2 and T3  represent 

time, tidy(Loc, T2, T3) represents a possibly complex (or composite) action 

performed from time T2 to time T3 and observe-trash-at(Loc,T1, T1+1) represents 

an external event that triggers the action: 

 

  Loc T1 [observe-trash-at(Loc,T1, T1+1)   T2 T3 [tidy(Loc, T2, T3)  T1 < T2]] 

 

In general, events include both external events and an agent’s own internally 

generated actions. Events are represented by atomic formulas including time 

and possibly other parameters. Events that actually occur are represented by 

atomic sentences, in which all parameters are instantiated to ground terms. 

Several events can occur simultaneously, and together contribute to a single 

state transition. For simplicity, we use the terms event and action to refer either 

to an atomic formula of type event or action, or the occurrence of an event or 

action, whenever the meaning is clear from the context. 

  For simplicity, time is represented by the ticks of a logical clock, where T+1 

stands for s(T) and 1, 2, ... stand for s(0), s(s(0)), …etc., as for example in22, 34, 37). 

Other, more elaborate representations of time are also possible. Moreover, time 

arguments can be hidden in an alternative syntax, as for example in22, 32).  

  The logic program L represents an agent’s view of states and events. It 

includes definitions of intensional predicates, composite events, and auxiliary 

predicates, which do not change over time. The combination of the extensional 

facts in a state Si and the intensional predicate definitions in L includes Datalog 

as a special case. The combination of the simple state transforming events and 
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the composite event definitions in L includes the functionalities of transaction 

logic6) and Golog35).  

  The clause below defines the composite action tidy(Loc, T2, T3) in terms of 

the simple, one step action pickup-trash(Loc, T2, T2+1)  and the composite actions 

goto(Loc, T1, T2) and getrid-trash(T2+1, T3): 

  

  tidy(Loc, T1, T3)   goto(Loc, T1, T2)  

        pickup-trash(Loc, T2, T2+1)  getrid-trash(T2+1, T3) 

 

As is usual in logic programming, variables that are not explicitly quantified are 

implicitly quantified with scope the clause in which they occur. The domain 

theory D = Dpre  Dpost, which also has the form of a logic program, defines the 

preconditions Dpre and postconditions Dpost of state transitions, in a manner 

similar to that of the situation calculus40 and event calculus33). Dpost defines only 

the effect of simple (or atomic) events on extensional predicates. For example, 

the following clauses define the postconditions of the simple event observe-trash-

at(Loc, T, T+1) and the simple action pickup-trash(Loc, T, T+1): 

 

  initiated(trash-at(Loc), T+1)   observe-trash-at(Loc, T, T+1) 

  terminated(trash-at(Loc), T+1)   pickup-trash(Loc, T, T+1)  

 

Intensional predicates are updated implicitly as ramifications of changes to the 

extensional predicates. For example: 

 

  all-clean(T)    Loc trash-at(Loc, T) 

 

FOL state conditions, such as the one in this definition, can occur both in 

reactive rules and in the bodies of logic programs. 

 

2.2   The Operational Semantics 
   The operational semantics combines the features of a logic programming 

language, like Prolog and a database language, like Datalog, with the reactive 

rules of production systems, and “practical” BDI agent languages, such as 

AgentSpeak44), using a destructively updated database. 

  Informally speaking, the purpose of a framework <R, L, D>, given an 

initial state S0 is to execute, for every set exti  of external events, where i  1, a 

set actsi+1 of actions such that the reactive rules R are all true in a canonical 

model of the logic program determined by L and the resulting sequence of 

timestamped states and events.  

  The canonical model defined in this paper is for logic programs 

containing non-atomic FOL conditions. We extend the definition of local 

stratification43) to allow for such conditions, and call logic programs satisfying 

this extended definition FOL-stratified. We call the corresponding extension of 

the perfect model43), the FOL-perfect model. As in the case of perfect models, 

FOL-perfect models, if they exist, are unique and two-valued. 
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  With the aim of making the reactive rules true, the operational semantics 

monitors the stream of states and events, to determine whether an instance 

antecedent σ of the antecedent of a reactive rule becomes true. If it does, it uses 

forward reasoning to generate the corresponding consequent σ of the rule as a 

goal to be achieved in the future. It uses backward reasoning to reduce such 

achievement goals to alternative plans, each of which is a conjunction of FOL 

state conditions, external events, actions and temporal constraints. It evaluates 

state conditions and external events, and it selects candidate actions for 

attempted execution. The operational semantics uses Dpre to ensure that only 

compatible sets of concurrent events actually occur.  

  In the operational semantics, fluents are represented without explicit 

time. The state transition from Si-1 to Si determined by a set evi of concurrent 

event occurrences (including both external events exti  and successfully executed 

actions actsi) is performed destructively, using the domain theory Dpost to delete 

fluents in Si-1 terminated by evi and to add fluents to Si  initiated by evi. Fluents 

that are neither initiated nor terminated simply persist from Si-1 to Si without 

reasoning that they persist, and without copying them explicitly from Si-1 to Si. 

Similarly, the operational semantics does not store the entire history of past 

events, but only the most recent set of events evi. 

 

2.3   The model-theoretic semantics 

 
In modal temporal logics39), states are represented by sets of facts without 

timestamps in separate possible worlds, linked by an accessibility relation 

associated with state transforming events. As a consequence, events and times 

are not first class objects in the language. In contrast in LPS, events and times 

are represented explicitly in the language. In the model-theoretic semantics, 

fluents and events are timestamped and combined in a single model-theoretic 

structure.  

    In the case of a fluent p with timestamp t, we reify p and write      

holds(p, t), which we also abbreviate as p(t). To distinguish between a state Si in 

which fluents are all without timestamps, and the same state in which all the 

fluents have the same timestamp ti, we write Si*.  

   In the model-theoretic semantics, a simple event e taking place between 

states Si-1 at time ti-1 and Si at time ti is written as happens(e, ti-1, ti), abbreviated 

as  e(ti-1, ti). For the concurrent occurrence of an unstamped set evi of events, 

occurring between ti-1 and ti we write evi* for the same set with their timestamps.  

  Whereas, in the operational semantics, state transitions are performed 

destructively, in the model-theoretic semantics, they are specified by an event 

theory ET, which is a hybrid of the situation calculus and the event calculus:  

 

Definition 2.1  

The event theory ET consists of the two clauses:  

 

holds(P, T)  initiated(P, T)  
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holds(P, T+1)  holds(P, T)  ¬ terminated(P, T+1)  

 

The second clause in ET is a frame axiom in the spirit of the situation calculus. 

However, the ontology of ET in terms of events and time points is inspired by the 

event calculus. ET is both locally stratified43) and FOL-stratified. 

   The predicates initiated and terminated are defined by the domain theory 

D. For simplicity, we assume that all fluents in Si hold at time i, and that all 

events in evi occur from time i-1 to i. The set evi can be empty. In other papers, 

we have made the opposite assumption, associating time points with simple 

events and time intervals with states.  The two conventions are mostly 

interchangeable. 

  

Definition 2.2  

Given an LPS framework  <R, L, D> and an initial state S0, the computational 

task is to generate, for every set exti  of external events, where i  1, a set actsi+1 

of actions, such that:  

 

    R  Dpre is true in the FOL-perfect model of ET  Dpost  L  S0*  ev*  

 where   ev* = ev1*    ev2*     …      evi*     …,   

     evi   = exti   actsi, for  i  1, and  act1   = {}. 

 

The notion of FOL-perfect model is defined in section 6. 

   In definition 2.2, the computational task is shared between an agent 

attempting to execute a collection of candidate actions (candidate-actsi)  to make 

R true and the environment, maintaining Dpre, by arbitrating between conflicting 

sets of candidate actions. The result of this arbitration is a set evi   = exti   actsi 

of events, where actsi is the subset of candidate-actsi that have succeeded, and 

exti is the set of all other successful events.  

   Given an initial state S0* and sequence of state transforming events ev*, 

the event theory ET together with Dpost  L defines the holds predicate for all 

subsequent states S1*, ..., Si*,.... It is possible to use this definition as a logic 

program, top-down or bottom-up, to compute the holds predicate, but this is not 

computationally feasible in most practical cases. It is not feasible, when states 

contain many fluents, to reason bottom-up with frame axioms, duplicating facts 

that hold from one state to the next. Nor is it feasible, when there are many state 

transitions, to reason top-down, determining whether a fact holds in a given 

state by checking recursively whether it held in the previous state. As a 

consequence, frame axioms are rarely used in practical applications, and 

destructive assignment or destructive updates are generally used instead. 

   The computational inefficiencies of reasoning with frame axioms has 

received little attention. For example, Shanahan49) on page 7, explicitly excludes 

consideration of “implementation issues”. In contrast, we consider frame axioms 

to be one of the main reasons why purely declarative languages have not been 

able to compete effectively with imperative programming languages and 

database systems. One of the main goals of this paper, therefore, is to show that 
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destructive change of state can be given a logical semantics, by using destructive 

updates to construct a model in which the reactive rules are all true. 

  We will define LPS and its operational semantics more precisely later in 

the paper. But first, we illustrate LPS with two examples.  

§3   Examples  

Example 3.1  

In this example, an online book store uses a database to keep track of its 

inventory, and allocates books in response to customer requests. Several books 

can be requested at the same time, and several allocations can also be made at 

the same time, provided the constraints specified by the preconditions are 

satisfied. One constraint prevents the allocation of a copy of a book if there are 

no copies available. A second constraint ensures that two customers are not 

allocated a copy of the same book at the same time.  

   The system chooses at every time point an allocation of books that 

satisfies the constraints. A request for an allocation that is not satisfied at one 

time may be satisfied at a later time, provided the amount of waiting time (say 

1000 units of time, equivalent perhaps to 1 second) is not too long.  

   To assist in keeping track of requests, the database contains information 

about requests that are currently pending. At the top-most level, the program 

consists of a single reactive rule and two logic programming clauses: 

 

R:  request(Customer, Item, T, T+1)   

 respond(Customer, Item, T,  T1, T2 )   T < T1  

 

Levents:   respond(Customer, Item, T,  T1, T2 )   pending(Customer, Item,  T1)   

     T1  < T+1000  allocate(Customer, Item,  T1, T1+1)  

     process-order(Customer, Item,  T1+1, T2)  

 

  respond(Customer, Item, T,  T1, T1+1)   pending(Customer, Item,  T1)   

      T1  = T+1000  apologise(Customer, Item,  T1, T1+1) 

 

The forward arrow  is used for logical implication in reactive rules, and the 

backward arrow  is used in logic programming clauses. As in Prolog, identifiers 

beginning with an upper case letter denote variables, and numbers or identifiers 

beginning with a lower case letter denote constants. Variables beginning with 

upper case T represent time points. 

   The variables Customer, Item and T in R are universally quantified with 

scope the entire rule R, but T1 and T2 are existentially quantified with scope the 

consequent of the rule. In general, as we will see in section 4, the quantification 

of all variables that are not bound explicitly in a rule can be left implicit. Here: 
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 request(Customer, Item, T, T+1) represents a simple external event that 

takes place in one state transition from time T to T+1;  

 allocate(Customer, Item,  T1, T1+1) and apologise(Customer, Item,  T1, T1+1) 

represent simple actions from T1 to T1+1;  

 respond(Customer, Item, T,  T1, T2 ) is a composite action from T1 to T2, 

defined in Levents, and T is a reference time used to limit the delay in 

responding to a request; 

 process-order(Customer, Item,  T1+1, T2) is either a composite action defined 

in Levents, but not shown here, or a simple action (in which case T2 = T1+2) 

that sends a message to the department in the company responsible for 

processing orders. In either case we assume that process-order always 

succeeds.  

 

There are two types of fluents, available(Item, Number) and pending(Customer, 

Item), which are initiated and terminated by simple events. For simplicity and to 

conserve space, the relationships between events and fluents are represented 

without their time arguments in the following table: 

 

event/action initiated fluents terminated fluents 

request(Customer, Item)       pending(Customer, Item)   - 

allocate(Customer, Item)      available(Item, New) available(Item, Old) 

pending(Customer, Item)   

apologise(Customer, Item)    - pending(Customer, Item)   

 

For example, the property that the action allocate(Customer, Item) initiates the 

fluent available(Item, New) can be represented by the clause in Dpost: 

 

initiated(available(Item, New), T+1)   allocate(Customer, Item,  T, T+1)  

 available(Item, Old, T)   New = Old – 1  

 

 The two precondition constraints are represented in Dpre: 

 

false  allocate(Customer, Item,  T, T+1)  available(Item, 0, T) 

false  allocate(Customer1, Item,  T, T+1)  allocate(Customer2, Item,  T, T+1)  

 Customer1   Customer2 

 

Given S0 = {available(hamlet, 6), available(emma, 2)}, here is one possible 

execution sequence, in which events and fluent are represented without their 

time arguments, and process-order(Customer, Item) is assumed to be a simple 

action: 

 

ext1 = {request(bob, hamlet), request(bob, emma), request(mary, emma)}   

S1 =   {available(hamlet, 6), available(emma, 2),  

   pending(bob, hamlet), pending(bob, emma), pending(mary, emma)}   
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candidate-acts2 ={allocate(bob,hamlet),allocate(bob, emma),allocate(mary, emma)}   

ev2 =  {allocate(bob, hamlet), allocate(mary, emma), request(john, emma)} 

S2 =   {available(hamlet, 5), available(emma, 1),  

    pending(bob, emma), pending(john, emma)}   

candidate-acts3 = {process-order(bob, hamlet), process-order(mary, emma),  

   allocate(bob, emma), allocate(john, emma)}   

 

Because of the second clause in Dpre, the actions allocate(bob, emma) and 

allocate(john, emma) cannot both be executed at the same time. Let us suppose 

allocate(john, emma) is chosen for execution. 

 

ev3 =  {process-order(bob, hamlet), process-order(mary, emma),  

   allocate(john, emma)} 

S3 =   {available(hamlet, 5), available(emma, 0), pending(bob, emma)}   

candidate-acts4  = {process-order(john, emma), allocate(bob, emma)} 

ev4  =  {process-order(john, emma)} 

 

All requests have now been allocated and processed except for bob’s request for 

emma. The action allocate(bob, emma) cannot be executed because of the first 

clause in Dpre. 

 

S4 = ….= S1000 = S3 

candidate-acts5  = …= candidate-acts1000 = {allocate(bob, emma)} 

ev5  =….= ev1000 = {} 

 

The action allocate(bob, emma) is now timed out. So the operational semantics 

tries the second clause for solving the goal respond(bob, emma, 1,  T1, T1+1). This 

generates the action apologise(bob, emma):  

 

candidate-acts1001 ={apologise(bob, emma)} 

ev1001 = {apologise(bob, emma)} 

S1001 =  {available(hamlet, 5), available(emma, 0)} 

 

The operational semantics also maintains a separate goal state, which is 

logically a conjunction of disjunctions of conjunctions of goals to be made true in 

the future. For example, the goal state G1  has three top level conjuncts: 

 

(respond(bob, hamlet, 0,  T11, T12 )   0 < T11)   

(respond(bob, emma, 0,  T21, T22 )   0 < T21)   

(respond(mary, emma, 0,  T31, T32 )   0 < T31)  

 

The goal states  G4 = ….= G1000 all have the same single conjunct:  

 

(pending(bob, emma,  T1)   T1  < 1000  allocate(bob, emma,  T1, T1+1)  

 process-order(bob, emma,  T1+1, T2))    
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(pending(bob, emma,  T1)    T1  = 1000  apologise(bob, emma,  T1, T1+1)) 

 

The goal state G1001 is logically equivalent to true.  

 Each top-level conjunct in a goal state is, in effect, a separate thread, 

each of which represents a search space of alternative ways of solving a top-level 

goal. This search space is like the search space for SLD-resolution27). Different 

search strategies can be used to explore these threads. In particular there is no 

need to generate and store the whole search space. In several of our prototype 

implementations, described in greater detail in Section 5.4, we have used a 

Prolog-like depth-first search strategy to explore branches of the search space, 

and have used a Prolog-like stack to represent conjunctions of subgoals, ordered 

by their time parameters. 

   Notice that R  Dpre is true in the perfect model of the logic program: 

 

     S0*  S1*  ...  S1001*  ev1*  ...  ev1001*  L 

 

where L contains Levents  and  definitions of = and <. 

   In this example, there are many alternative actions that can be chosen in 

the attempt to make R  Dpre true. The framework specifies only the logic of the 

problem, but not the control strategy needed to obtain an efficient and fair 

algorithm. In several of our prototype implementations, the programmer controls 

which candidate actions are tried, simply by ordering clauses in L (as in Prolog). 

In addition, the programmer can specify whether different reactive rules should 

have different priorities, or whether candidate actions should succeed with a 

first-come-first-served strategy.  

   LPS, like production systems, BDI agents and database triggers in 

general, is incomplete with respect to the model-theoretic semantics of reactive 

rules, because it can generate only “supported” models that make the 

consequents of reactive rules true when their antecedents become true. It cannot 

arbitrarily perform an action that has no relation to its goals, cannot 

preventatively make a reactive rule true by making its antecedent false, and 

cannot proactively make its consequent true in anticipation of its antecedent 

becoming true in the future. Although this kind of incompleteness is a limitation 

for an AI system, it is desirable for practical programming and database 

systems, because it greatly contributes to their efficiency.  

  It is not easy to illustrate all the major features of LPS in a single, simple 

example. In particular, this example does not illustrate the role of FOL-state 

conditions, intensional fluents or composite event recognition. However, the 

example could easily be extended, for example with such intensional fluent 

definitions such as: 

 

 level(Item, low, T)  available(Item, N, T)  N < 2 
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The benefit of such definitions is that the intensional predicate (level in this 

case) changes its value automatically as a ramification of changes to the 

extensional predicates (available). 

   The next example illustrates complex event recognition, as well as the 

ability of the operational semantics to switch between alternative plans. 

 

Example 3.2 

This example is a variant of an example in Hausmann et al21) in which a reactive 

agent monitors a building for outbreaks of fire. The agent receives inputs from a 

heat sensor and a smoke detector. If these inputs are sufficiently close together 

in time, then the agent recognises a possible fire, and attempts to deal with it. 

There are two alternative plans. One alternative is to activate local fire 

suppression devices and then to call for a security guard to inspect the area. The 

other alternative is simply to call the fire department.  

  The representation is an LPS framework <R, L, D> consisting of a main 

program R, which contains a single reactive rule, and a logic program L. 

However, the domain theory D and all states are all empty. The expression n sec 

is an abbreviation for some appropriate number of clock ticks, e.g. 1000  n. 

 

R:   heat-sensed(Area,  Tf, Tf+1)  smoke-detected(Area, Ts, Ts+1)  

    |Tf – Ts|   60 sec   max(Tf, Ts, T)  

   fire-response(Area, T,  T1, T2 )   T < T1  

 

Levents: fire-response(Area, T, T1, T2+1)  activate-fire-suppression(Area, T1, T1+1)  

     T1    T + 5 sec   send-security-guard(Guard, Area, T2, T2+1)   

     T1 < T2    T1 + 10 sec 

 

   fire-response(Area, T, T1, T1+1)   

 call-fire-department(Area, T1, T1+1)   T1   T + 120 sec 

 

Here heat-sensed(Area,  Tf, Tf+1)  smoke-detected(Area, Ts, Ts+1) represent 

external events, each of which takes place during one state transition.  For 

simplicity, the actions activate-fire-suppression(Area, T1, T1+1), send-security-

guard(Guard, Area, T2, T2+1)  and call-fire-department(Area, T1, T1+1) are all 

treated as simple actions, which also take place during one state transition. 

There are no fluents in this example.  

  The antecedent of R represents an unnamed composite event and the 

consequent represents the named composite action fire-response(Area, T, T1, T2). 

This composite action consists of two alternative plans, each of which is 

represented by a clause in Levents. Both plans are temporally constrained.  

  The framework specifies only the logic of the problem, but not the control 

strategy. In practice, it might be a good strategy to try the first plan first. In an 

implementation, this can be indicated by the order in which the rules are 

written, as in Prolog. Also as in Prolog, if any part of the first plan fails, then the 

second plan can be tried. Moreover, even if the first plan fails, it can be retried as 
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long as the temporal constraints can be satisfied. If both plans fail and cannot be 

retried, then the reactive rule cannot be made true. This can be avoided by 

adding additional alternative plans. Notice that the temporal constraints ensure 

that, if the first plan takes too long, then the second plan can still be tried. 

  When a plan is attempted but fails, its partial execution will typically 

have caused changes to the current state. Even if it has not caused any changes, 

state changes may take place because external events have occurred. Thus, if the 

plan is re-tried later or if an alternative plan is attempted instead, it is in the 

context of the new changed state. Indeed, this is why previously failed actions 

remain in the goal state, because, if the temporal constraints allow it, they can 

be retried later and may succeed in the new state.  

  The operational semantics maintains only the current state and only the 

events that gave rise to the current state. So when an event occurs, for example 

smoke-detected(kitchen, 15, 16), a partially executed rule is derived: 

 

   heat-sensed(kitchen,  Tf, Tf+1)   |Tf – 15|   60 sec   max(Tf, 15, T)  

     fire-response(kitchen, T,  T1, T2 )   T < T1  

 

If, for example a later event heat-sensed(kitchen,  26, 27), matches a condition of 

the derived rule, and its time of occurrence satisfies the temporal constraints, 

then a new goal is added to the goal state: 

 

   fire-response(kitchen, 26,  T1, T2 )   26 < T1 

 

In this way, it is possible to recognize a complex event consisting of several 

simple events occurring over a period of time without the need to store the entire 

history of simple events. The simple events can be processed as streams, and 

need not be stored for longer than a single state transition. 

§4  The Language  

4.1   Vocabulary 
   We assume a sorted language in which constants and variables are 

assigned sorts. The argument places of function symbols and predicate symbols 

are correspondingly assigned sorts, so that formulas are well-formed only if the 

argument places are filled by terms of the allowed sort. 

   Predicate symbols are partitioned into (disjoint) sets representing fluents, 

events, auxiliary predicates and meta-predicates:  

 

 Fluent predicate symbols are partitioned into extensional predicates, which 

represent facts in the states Si, and intensional predicates defined in L. 

 Event predicates are analogously partitioned into simple event predicates 

and composite event predicates. Simple events can represent either 



12 

 

externally generated events or internally generated actions.  Composite 

event predicates are defined in L. 

 Auxiliary predicates consist of predicates that do not vary with time, such as 

max and min and others used for arithmetic, all of which are defined in L.  

 The meta-predicates consist of the predicates initiated and terminated 

defined in D, and the predicates holds and happens. Fluents and events 

occur as terms when they are arguments of the meta-predicates. 

 

States Si are not represented explicitly in the language, but are represented 

implicitly by the set of all the extensional facts that are true at time i. Similarly, 

the sets evi of events are not represented explicitly, but are represented 

implicitly by the set of simple events that occur from time i-1 to i.   

 

4.2   Reactive Rules 
   Reactive rules (or simply rules) in R are sentences of the logical form: 
 

    X [antecedent(X) Y consequent(X, Y)]  

 

where X is the set (or tuple) of all unbound variables, including time variables, 

that occur in antecedent(X), and Y is the set (or tuple) of all unbound variables, 

including time variables, that occur only in consequent(X, Y). In addition to the 

variables in X and Y, rules can contain other bound variables in FOL state 

conditions. Because of these restrictions on the quantification of variables, we 

can omit the quantifiers X and Y. More formally: 

 

Definition 4.1  

A reactive rule is a sentence of the form antecedent(X) consequent(X, Y), where 

both antecedent(X) and consequent(X, Y) are a conjunction of conditions each of 

which is either a state condition, event atom or temporal constraint.  

 

 A state condition is a formula of first-order logic (FOL) in the vocabulary 

of the fluent and auxiliary predicates, containing at most a single time 

variable, which is unbound. Operationally, the evaluation of a state 

condition can be understood as a query to the current extended state, 

where the time parameter refers to the current time.    

 An event atom is an atomic formula whose predicate symbol is a simple 

or composite event. Similarly an action atom is an event atom whose 

predicate symbol is an action. 

 A temporal constraint is an atomic formula of the form t1 < t2 or t1 ≤ t2 

where t1 and t2 are terms represent time points. 

 

The only variables that occur in temporal constraints must also occur in the 

state conditions and event atoms of the rule, and all the time parameters that 

occur in the antecedent are constrained directly or indirectly in the consequent 
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to be earlier than or equal to the time parameters that occur only in the 

consequent. 

   Notice that, although fluents can occur in FOL state conditions, events 

can occur only as atomic conjuncts. This is because events are processed as 

streams, and are stored for only a single state transition. This makes it hard, but 

not impossible for the operational semantics to check, for example, the condition 

that no event of a certain kind occurs within a certain interval of time. This 

restriction on the syntax of reactive rules is not necessary for the model-theoretic 

semantics, which requires only that the reactive rules are true, as determined by 

the standard definition of truth for sentences of FOL. The restriction can be 

removed at the expense of complicating the operational semantics. However, 

discussion of this topic is beyond the scope of this paper. 

 

4.3   Goal clauses   
   In the model-theoretic semantics, whenever the antecedent of a reactive 

rule becomes true, the consequent of the rule becomes a goal to be made true in 

the future. For this purpose, the operational semantics maintains a goal state 

containing goal clauses: 

 

Definition 4.2  

A goal clause is an existentially quantified conjunction of state conditions, event 

atoms and temporal constraints. All variables in the temporal constraints occur 

in the state conditions and event atoms of the goal clause. 

 

Note that the effect of having an initial goal clause C0  can be obtained by having 

instead a rule start(0, 1)  C0, where start is a simple event occurring from time 

0 to 1. 

 

4.4   Logic programs  
   The logic program L of an LPS framework <R, L, D> can contain non-

atomic FOL conditions, as in the extended logic programs of Lloyd and Topor29). 

Here we refer to “extended logic programs” simply as “logic programs”: 

 

Definition 4.3  

A logic program is a set of clauses of the form head(X)  body(X, Y), where X is 

the set of all variables that occur in head(X), and Y is set of all unbound 

variables that occur only in body(X, Y). head(X) is an atomic formula, and 

body(X, Y) is a (possibly empty) conjunction of conditions, which are atomic and 

non-atomic FOL formulas.1 An extended logic program whose bodies are 

(possibly empty) conjunctions of atomic formulas is a Horn clause program. 

 

Clauses are implicitly quantified in one of the two equivalent forms: 

                                                           
1 Although a conjunction of FOL formulas is itself an FOL formula, it is useful in LPS to distinguish 

between atomic and non-atomic FOL formulas,  
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 X [head(X)  Y body(X, Y)]  or  XY [head(X)  body(X, Y)]  

 

Definition 4.4  

The logic programming component L of an LPS framework is partitioned into 

three components: L = Lint  Levents  Laux. 
 

 Lint consists of clauses of the form head(X, T)  body(X, Y, T) in which the 

predicate of head(X, T) is an intensional predicate, and the predicates in 

the body are intensional, extensional or time-independent. Each clause in 

Lint contains exactly one time parameter T that is a variable.  

 Levents consists of clauses of the form head(X, T1, T2)  body(X, Y, T1, T2) in 

which the predicate of head(X, T1, T2) is a composite event predicate,  and 

body(X, Y, T1, T2) is a conjunction of FOL state conditions, event atoms 

and temporal constraints. T1 and T2 represent the interval over which the 

composite event takes place, and are constrained to be, respectively, the 

earliest and latest time variables occurring in a fluent or event atom in 

body(X, Y, T1, T2). (X might include other time parameters, as in the 

examples in section 3). The time variables in temporal constraints must all 

occur in the head or unbound in fluent or event atoms in the body.  

  Laux defines auxiliary predicates, such as ≤,  <, max and min, which do not 

change with time. 

 

Notice that the body of a clause in Levents is similar in form both to a goal clause, 

and to the antecedent or consequent of a reactive rule. 

 

4.5   The Domain Theory D  
   The domain theory D = Dpost  Dpre has two components. Dpost is a logic 

program that specifies the extensional fluents that are initiated and terminated 

by simple events. Dpre is a set of integrity constraints restricting the occurrence 

and co-occurrence of sets of simple events. 

 

Definition 4.5  

Dpost is a set of clauses of the form head(T+1)  body(T, T+1). 

Dpre  is a set of integrity constraints of the form false  body(T, T+1). 

head(T+1) is an atom of the form initiated(P, T+1) or terminated(P, T+1), 

   where P is an extensional fluent.  

body(T, T+1) is a conjunction of simple event predicates of the form  

happens(e, T, T+1) and FOL state conditions with time parameter T.  

 

In the operational semantics, body(T, T+1) is a query to the augmented current 

state Si*  Lint  Laux  evi*  at time i. An answer to the query is a ground 

instantiation of the free variables in body(T, T+1), with T instantiated to i, and 



15 

 

with bound variables treated according to the classical semantics of universal 

and existential quantifiers. 

  

4.6   The Environment  
 An LPS framework <R, L, D> represents the goals R and beliefs L of an 

individual agent embedded in an environment, which includes both a shared 

global state, as well as the agent’s own, encapsulated local state. In a multi-

agent system, the global component of the state is shared among a collection of 

agents, as in the Linda coordination language paradigm9). 

   Given a current state Si-1 and candidate actions submitted by different 

agents, the environment merges them into a combined set evi of concurrent 

events satisfying Dpre, arbitrating between conflicting candidates. Similarly, the 

environment updates the state Si-1 to Si, using Dpost. 

   Computation is defined as performing actions to make the goals R of an 

individual agent true, while ensuring that the constraints Dpre are not violated by 

becoming false. This ensures that, in a multi-agent setting, all the agents have 

the same consistent (and co-ordinated) view of the shared components of the 

environment. 

 

 

§5     The Operational Semantics 
 The operational semantics (OS) can be thought of as a potentially non-

terminating cycle, in which external events and the agent’s own successfully 

executed actions are merged, the state is destructively updated, and the agent 

thinks and decides what to do next. Thinking can be interrupted to observe 

changes in the environment, and to attempt to execute actions. 

  The OS is compatible with many different implementations. In 

particular, although it is defined for programs written with an explicit 

representation of time, it can also be implemented, as in Kowalski and Sadri31), 

directly for programs written in an external syntax in which temporal order is 

indicated by the order in which conditions and events are written.  

 The cycle is only semi-constructive. Extended states can contain a 

countably infinite number of ground atoms, and an FOL state condition, which 

queries the extended state, can have a countably infinite number of answers. In 

practice, these infinities can be avoided, for example by avoiding function 

symbols, as in Datalog.  

 

5.1   Goal States 
   In addition to maintaining the current state Si, the OS maintains a goal 

state Gi, which is a set (or conjunction) of goal trees. Every node in a goal tree is 

a goal clause representing an alternative way of solving the goal clause at the 

root of the tree. This top-level goal clause is an instance of the consequent of a 

reactive rule introduced when the antecedent of the rule becomes true. To solve 

the computational task, all the goal trees must eventually be reduced to true. 
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Definition 5.1 

 A goal state is a set (or conjunction) of goal trees. 

 A goal tree for a goal clause C0 is a set (or disjunction) of goal clauses 

organized as nodes in a tree, with root C0. Every child node Ci is obtained 

from its parent node Ci-1 by goal-reduction in steps 2.1 and 2.2 of cycle. 

 A branch of a goal tree is a sequence of nodes C0, C1, … Cn, n ≥ 0, starting 

with the root node C0, such that every node Ci is a child of the previous 

node Ci-1.  

  The top-level goal clause C0 of a goal tree is reduced to true if and only if  

  there is a branch C0, C1, … Cn of the tree with Cn = true. In this case we  

  also say that the goal tree is reduced to true. 

 The top-level goal clause C0 of a goal tree is reduced to false if and only if 

every branch C0, C1, … Cn of the tree contains a goal clause Cn = false. In 

this case we also say that the goal tree is reduced to false. 

 

An empty goal state is logically equivalent to true, and a goal tree that is reduced 

to false is logically equivalent to false. Operationally, each goal tree is a separate 

thread, independent of other goal trees.  

   To simplify the OS, we will assume that composite events in the 

antecedents of reactive rules have been pre-processed, by performing backward 

reasoning in advance, using Levents to reduce composite events to conjunctions of 

simple events, state conditions and temporal constraints. This could give rise to 

an infinite set of reactive rules. Although a practical implementation can work 

only with finite sets, in theory the OS can handle such infinite sets.  

   At the expense of complicating the OS, composite event definitions could 

also be executed in the forward direction. Alternatively, backward reasoning 

could be used at “run time” to reduce composite event predicates to simpler event 

predicates. We ignore these (and other) possibilities in this paper. 

   In addition to maintaining a goal state, the OS maintains a current set of 

reactive rules Ri. A new rule is added to Ri when a conjunct in the antecedent of a 

rule becomes true. The new rule represents an instance of the rest of the original 

rule that needs to be true in the future. It is the generation of such new rules 

that makes it possible to forget the history of past events. Conceptually, the 

rules in Ri and the goal clauses in Gi are just different kinds of goals. However, 

in the OS, it is useful to treat them separately. 

 

5.2   Restricting the Amount of Computation within a Cycle 
   To be faithful to the model-theoretic semantics, it is not possible to 

restrict the amount of time that can be spent on step 0 of the cycle, which 

updates the state, and on step 1, which processes the antecedents of reactive 

rules. In a practical system, it would be necessary, perhaps by restricting the 

language, to ensure that these steps can be performed in a timely manner, before 

the next time in the succession of time points. 
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   On the other hand, it is necessary to restrict the amount of time that is 

spent on goal reduction in step 2. This can be done in different ways. If the time 

of the next iteration of the cycle is known in advance, then the number of goal-

reduction steps can simply be restricted so that the time is not exceeded. 

 

5.3   The OS Cycle 
   Initially R0 = R, act1 = {}; and G0 = {}. The i-th iteration of the cycle, for      

i > 0, consists of the following steps:  

 

Step 0. Update the current state. Select a set of concurrent events evi  =  exti 

 actsi such that Dpre is true in the FOL-perfect model of Si-1*  Lint  Laux  evi*, 

where exti is a set of external events and, for i > 1, actsi  is a subset of  the 

submitted candidate actions candidate-actsi. 
   Transform state Si-1 into Si, by deleting any fluents p such that                

terminated(p, i)  is true in the FOL-perfect model of Dpost  Si-1*  Lint  Laux  

evi*  and adding any  fluents p such that initiated(p, i) is true in the FOL-perfect 

model of Dpost  Si-1*  Lint  Laux  evi*. 

   Let Gi   = Gi-1, Ri   = Ri-1  and candidate-actsi+1   = {}.  

 

Step 1. Process antecedents of rules. For every reactive rule in Ri, construct 

every parsing of the rule into the form: 

 

   early-antecedents  other-antecedents  consequent 

 

where early-antecedents is a conjunction of state conditions and simple events 

such that all the time parameters in early-antecedents can be unified with the 

current time i, without making any temporal constraints in other-antecedents 

false, and without constraining any of the time parameters in state conditions or 

events in other-antecedents to be equal to or earlier than i. 

   For each such parsing and each ground instance early-antecedents σ that 

is true in the FOL-perfect model of Si*  Lint  Laux  evi*, generate the 

corresponding “resolvent”: 

 

   other-antecedents σ  consequent σ 

 

simplify the temporal constraints in the resolvent, and add the simplified 

resolvent as a new reactive rule to Ri.  

  For simplification, it is sufficient to delete any temporal constraints that 

are true in the FOL-perfect model of Laux. If after simplification, other-

antecedents σ is an empty conjunction (equivalent to true), then the simplified 

resolvent is deleted from Ri and added to Gi as a new top-level goal, starting a 

new goal tree (or thread).  

 

Step 2. Process goal clauses. If the time of the next cycle has been reached or  
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there are no new steps that can be performed in this iteration of the cycle, then 

this iteration of the cycle terminates. Otherwise, choose any goal clause C in Gi 

and perform one of the steps 2.1, 2.2 or 2.3. 

 

Step 2.1. Reduce a composite event. Select a composite event atom E in C, 

unify E with the head of some clause in Levents and update Gi by adding the 

resolvent to Gi  as a child of C. Note that there are no restrictions on the time 

parameters in this step. This allows the goal-reduction of composite events to 

look-ahead into the future, which is a modest kind of forward planning. 

 

Step 2.2. Reduce a conjunction of state conditions and simple events. 

Select a parsing of C of the form: 

 

   early-consequents  other-consequents 

 

where early-consequents is a conjunction of state conditions and simple events 

such that all the time parameters in early-consequents can be unified with the 

current time i, without making any temporal constraints in other-consequents 

false, and without constraining any of the time parameters in state conditions or 

events in other-consequents to be equal to or earlier than i. 

  If there is a ground instance early-consequents σ that is true in the FOL-

perfect model of  Si*  Lint  Laux  evi*, then choose one such instance, generate 

the “resolvent” other-consequents σ, simplify the temporal constraints, and 

update Gi  by adding the simplified resolvent to Gi  as a child of C.  

  If after simplification, the resolvent is an empty conjunction (equivalent 

to true), then the entire goal tree containing the goal clause can be deleted, 

because the top-level goal clause in the tree is then also true.  

 

Step 2.3. Choose a conjunction of simple actions for attempted 

execution.  Select a parsing of C of the form: 

 

   actions  other-consequents 

 

where actions is a conjunction of simple actions happens(a, T, T+1) such that all 

the time parameters T and T+1 can be unified with the times i and i+1  

respectively, without making any temporal constraints in other-consequents 

false, and without constraining any of the time parameters in state conditions or 

events in other-consequents to be equal to or earlier than i. 

    Add all of the simple actions happens(a, i, i+1) to candidate-actsi+1. Any 

candidate action happens(a, i, i+1)  that is successfully executed in step 0 of the 

next iteration of the cycle is then resolved upon in step 2.2 of that iteration. 

 

Notes:  
   1. Steps 1 and 2 of the OS are the operational semantics of a single 

agent, possibly interacting with other agents. In the multi-agent case, step 0 is 
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global to all the agents, and as a simplifying assumption the different agent 

cycles are all synchronized, so that all of the agents try to perform their actions 

at the same time.  

   2. Step 2.3 allows the possibility that the selected actions may contain 

variables other than time variables. This could be useful in the case of external 

actions where the variables can give feedback about the result of the action. For 

example, the variable X in the action move-forward(X, i, i+1) might be 

instantiated by the environment indicating how far the action succeeded. 

Alternatively, and in the case of internal actions, we can insist that only ground 

simple actions are selected for attempted execution.  

    3. In steps 1, 2.2 and 2.3, different parsings amount to different ways of 

sequencing state conditions and simple events. For example, the conjunction 

p(T1)  q(T2)  r(T3)   T1  ≤  T3  T2 ≤  T3 has the four correct parsings: 

 

   p(T1)  q(T2)  r(T3) at the same time 

 p(T1)  q(T2)  at the same time and before r(T3) 

 p(T1) before q(T2)  r(T3)    q(T2) before p(T1)  r(T3) 

 

   4. If a goal clause becomes false, then there is no point in trying to solve 

other subgoals in the same goal clause. If an entire goal tree is reduced to false, 

then the reactive rule itself is also false. In theory, the OS should terminate in 

failure. However, in practice, we may want to allow the OS to continue, trying to 

make all instances of the rules true in the future. Moreover, we also have the 

option of providing a fail-safe, alternative way of solving any goal that is 

vulnerable to failure. 

   5. In the various repetitions of step 2 within a given iteration of a cycle, 

the OS can select any goal clause C in Gi. It can jump from one goal tree to 

another, attempting to solve different top-level goal clauses concurrently. Or it 

can focus on one goal tree at a time. Within a given goal tree, it can jump from 

one branch to another, trying alternative ways of solving the same top-level goal 

clause concurrently. Or it can focus on one way of solving a top-level goal clause, 

extending one branch of the goal tree at a time.  

   6. In different iterations of a cycle, in step 2, the OS can re-select the 

same goal clause C. In step 2.1, however, it may do so only to try to unify the 

selected composite event atom E in C with the head of a clause in Levents that has 

not been tried before. In step 2.2 it can retry the same parsing early-consequents 

of conditions and simple event atoms, because the augmented current state Si*  

Lint  Laux  evi* may have changed. For similar reasons, in step 2.3 it can retry 

the same conjunction of actions, because actions that were not possible before 

may become possible in the new current state.  

 

5.4   Implementation 
  The OS is compatible with many different implementations. We have 

developed several implementations in Prolog and Java, and have tested them on 

a variety of examples, including the blocks world, the dining philosophers, a 
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traffic norms example2) and a tool hire company example. In these 

implementations, we have explored different strategies for goal reduction in 

steps 2.1 and 2.2, and for action selection in step 2.3 of the OS. 

  In all of the Prolog implementations, the goal state is represented as a 

list of goal trees (or threads). In most of these implementations, each goal tree 

(or thread) is also represented as a list, representing a current, single branch of 

the goal tree, which is searched in a depth-first manner, as in Prolog.  

  In each cycle, goal reduction in step 2 re-commences from the thread at 

the beginning of the list representing the goal state.  The number of goal 

reductions in a cycle is restricted by setting a maximum number N that can be 

performed in each cycle. During each cycle, as many threads of the goal state are 

explored as possible, extending each branch by a proportion of N or until the 

branch ends with a goal clause starting with a simple action. The set of all such 

actions at the ends of branches makes up the set of candidate-acts at the end of 

the cycle. 

  New top-level goals, starting new threads, are added to the goal state in 

step 1 on the cycle. We have explored several strategies for prioritizing these 

goals. Adding the new threads to the front of the list representing the goal state 

gives priority to the new threads, processing them last-in-first-out. Adding them 

to the end of the list processes them first-in-first-out.  

  We have also explored the alternative strategy of giving the user the 

ability to assign priorities to the reactive rules. These priorities are then 

inherited by the new threads that are generated when the antecedents of the 

rules become true. For example, the second of the following two rules is assigned 

higher priority than the first: 

 

  get-hungry(T, T+1)  eat(T1, T2 )   T < T1     Priority 1   

 attacked(T, T+1)  run-away(T1, T2 )   T < T1    Priority 100   

 

When a new thread is added to the list representing the goal state in step 1 of 

the cycle, the list is re-ordered, with higher priority threads positioned earlier in 

the list and lower priority threads positioned later 

We have also investigated prioritizing goals in order of their deadlines, 

which is the latest time at which they must start. For example, given the rules: 

 

 get-hungry(T, T+1)  eat(T1, T2 )   T < T1   T1 < T+10   

  attacked(T, T+1)  run-away(T1, T2 )  T < T1  T1 < T+3    

and observations: 

   get-hungry(0, 1) 

  attacked(0, 1) 

 

we get two top-level goal clauses, starting new threads:  

 

  eat(T1, T2 )   0 < T1   T1 < 10 

  run-away(T1, T2 )  0 < T1  T1 < 3 
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Using a Prolog solver for the temporal constraints, the goal clauses and the 

conjuncts in goal clauses are sorted according to their deadlines, from the 

earliest to the latest. Since the action run-away has an earlier deadline, the goal 

clauses will be ordered with run-away(T1, T2 )  0 < T1  T1 < 3 given higher 

priority than eat(T1, T2 )   0 < T1   T1 < 10. Assuming that the two actions 

cannot be executed concurrently (an assumption that can be represented in Dpre), 

the action run-away(T1, T2 ) will be attempted before the action  eat(T1, T2 ). 

   In addition, we have also implemented a prioritization strategy in which 

the programmer specifies the maximum number of cycles that a goal clause can 

wait before it is processed. When a new thread is added to a goal state, it is 

stamped with the current cycle index. This cycle index is then used to recognise 

when a thread has reached the maximum time it is allowed to wait, at which 

time if it has not already been processed, it is promoted to a position of highest 

priority in the list representing the goal state. 

   Perhaps the hardest decision that the OS needs to make is whether and 

for how long to retry a simple action or to evaluate a state condition, when they 

fail. In some cases, there may be other alternatives that can be tried. In any 

case, a decision needs to be made whether or not to retry the failed action or 

failed state condition in the future, when it may succeed in a new state. 

   In one of the strategies we have implemented, the programmer can 

specify a maximum number of cycles that a simple action or state condition can 

be retried. If this maximum number of retries has been reached and the action or 

state condition has not succeeded, then the OS needs to try an alternative. 

   We have also implemented a breadth-first strategy for non-recursive LPS 

programs. In this implementation in steps 2.1 and 2.2 of the OS, goal-reduction, 

using the clauses in Levents, Lint and Laux, is performed in all possible ways. This 

simplifies the resulting goal state, which then consists of a list of threads, each of 

which consists of a top-level goal whose immediate successors are a disjunction 

(represented by a list), each of whose disjuncts is a conjunction (represented by a 

list) of only simple actions, state conditions involving only extensional predicates 

and temporal constraints. In addition, we have combined different strategies, 

including this breadth-first strategy, with the different strategies described 

earlier for prioritising goals. 

   Our prototype implementations confirm that the OS and the model-

theoretic semantics of LPS can be realised in a variety of different ways.  

Determining the best strategies, both in terms of expressive power and in terms 

of efficiency is ongoing work. 

 

§6  Soundness and the Frame Theorem 
   In this section, we define FOL-stratification and FOL-perfect model. 

Lloyd and Topor36) reduce logic programs with FOL conditions in their bodies to 

normal logic programs whose bodies are conjunctions of literals, namely atomic 

formulas and negations of atomic formulas. This reduction involves the 

introduction of new, auxiliary predicates. In contrast, in the operational 
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semantics of LPS we evaluate FOL conditions directly using the standard 

definition of truth for sentences of first-order logic. For this purpose, we 

generalise the treatment of negative literals in the perfect model semantics of 

locally stratified logic programs to non-atomic FOL conditions. Because the 

resulting FOL-perfect models are two-valued, the standard two-valued Tarskian 

semantics applies. 

 

6.1   FOL-stratification and FOL-perfect Model 

   As usual in logic programming, we treat a logic program P as standing for 

the set of all its instances over the Herbrand universe, which is the set of all 

well-sorted, variable-free (i.e. ground) atoms constructible from the vocabulary of 

P. By a ground instance of a clause head(X)  body(X, Y) we mean a clause of 

the form head(x)  body(x, y), where x and y are sets of ground terms substituted 

for the sets of variables X and Y respectively. The variables in X and Y do not 

include any variables bound explicitly by quantifiers in non-atomic FOL 

conditions in body(X, Y). 

 

Definition 6.1  

Let P be a ground logic program. Let H = 0≤i≤α Hi, where α is a countable, 

possibly transfinite ordinal, be a partitioning and ordering of the Herbrand base 

(i.e. the set of all well-sorted ground atoms over the Herbrand universe) H of P. 

For A  H, let stratum(A) = i if and only if A  Hi. Then P is FOL-stratified with 

respect to Hi, 0 ≤ i ≤α, if and only if for every clause head  body in P and for 

every condition C in body: 

 

 if C is an atomic condition, then stratum(C) ≤ stratum(head) 

if C is a non-atomic FOL condition, then for every ground instance A of an 

 atomic  subformula of C stratum(A) < stratum(head). 

 

Any such FOL-stratification of H induces a corresponding FOL-stratification of  

P = 0≤i≤α Pi, where Pi = {head  body  P | stratum(head) =  i} defines the 

predicates in Hi. 

 

Informally speaking, the FOL-perfect model of an FOL-stratified program P is 

constructed bottom-up, by repeatedly using the FOL-perfect model of all 

predicates defined at strata Pj, j < i to evaluate the truth values of FOL-

conditions in Pi. This construction can be carried out with the aid of a variant of 

the Gelfond and Lifschitz reduct14). 

 

Definition 6.2   

Let P1 be a set of ground atoms and P = P1  P2 be an FOL-stratified program 

with respect to the stratification H = H1  H2 of the Herbrand base H of P. Then 

reduct(P, P1) is the set of Horn clauses generated from P by deleting all FOL 

conditions in the bodies of clauses in P that are true in P1 and deleting all 
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clauses in P that have an FOL condition that is false in P1. Note that P1 is 

contained in reduct(P, P1). 

 

Notice that this definition exploits the dual character of the set of ground atoms 

P1 - both as clauses in P and as a Herbrand model of the predicates defined in P1. 

Notice also that the definition of reduct could be extended to include the 

evaluation of conditions involving aggregate operators. 

 

Definition 6.3  

Let P be a ground Horn clause program, and let H be the Herbrand base of P. 

Then the minimal model min(P) of P is the smallest set M   H such that, for 

every clause head  body in P, if all the conditions in body are in M, then head 

is also in M.  

 

Definition 6.4  

Let P be a ground FOL-stratified logic program with respect to Hi, 0≤i≤α. The 

FOL-perfect model perfect(P)  of P is defined by: 

 

1. perfect(P0) =  min(P0), since P0 is a set of Horn clauses. 

2. perfect(Pi+1) =  min(reduct(Pi+1, perfect(Pi))). 

3. If β is a limit ordinal, then perfect(Pβ) = 0≤ i<β perfect(Pi).  

4. perfect(P) = perfect(Pα). 

 

6.2   The Soundness Theorem 
    

Theorem 6.1  

Given an LPS framework <R, L, D> and an initial state S0, where L and D are 

FOL-stratified, suppose for every set exti  of external events, where i > 0, the OS 

selects a set of concurrent events evi  =  exti  actsi  at step 0 of the ith iteration of 

the OS cycle. 

 

Then R  Dpre is true in the FOL-perfect model of ET  Dpost  L  S0*  ev*  

where   ev* = ev1*    ev2*     …      evi*     …,   

    evi   = exti   actsi, for  i  1, and  act1   = {}, 

 

if for every top-level goal clause C added in a goal state Gi, i ≥ 0,  

there exists a goal state Gj  such that i ≤ j and C is reduced to true in Gj. 

 

The only-if half of the theorem also holds under certain conditions on the non-

deterministic choices made in step 2 of the OS. In particular, the OS should 

perform every goal-reduction possible in step 2.2, to ensure that any sub-goals 

that are true in the model generated so far are recognized and reduced to true.  

 

6.3   The Frame Theorem  
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   The proof of the soundness theorem makes use of the more general frame 

theorem, which states that destructive updates generate the same model as the 

event theory ET given in Definition 2.1: 

 

holds(P, T)  initiated(P, T)  

holds(P, T+1)  holds(P, T)  ¬ terminated(P, T+1)  

 

Theorem 6.2   

Let L = Lint  Laux and Dpost be FOL-stratified programs, evi* a set of ground 

atoms of the form happens(e, i-1, i), and S0 a set of ground atoms of the form 

holds(p, 0) where p is an extensional fluent. Let  

 

Si =(Si-1  – {p| terminated(p, i)  perfect(Dpost  L  Si-1*  evi*)}) 

           {p | initiated(p, i)     perfect(Dpost  L  Si-1*  evi*)} 

 

Then   perfect(Dpost  L  S*  ev*) = perfect(ET  Dpost  L  S0*  ev*) 

where   S* = S0*    S1*     …      Si*     … 

and   ev* = ev1*    ev2*     …      evi*     …. 

 

The appendix contains sketches of proofs of both theorems. 

   As pointed out in an earlier paper32), the operational semantics is 

incomplete. In particular, it cannot preventatively make a reactive rule true by 

making its antecedent false. For example, it cannot make the rule: 

 

attacks(X, you, T, T+1)  ¬ prepared-for-attack(you, T+1)  

 surrender(you, T+1, T+2)  

 

true by performing actions to make prepared-for-attack(you, T+1) true and so        

¬ prepared-for-attack(you, T+1) false.  

   Also, it cannot proactively make a rule true by making its consequent 

true before its antecedent becomes true. For example, it cannot make: 

 

enter-bus(T, T+1)  have-ticket(T+1)  

 

true by proactively making have-ticket(T+1) true, before enter-bus(T, T+1) is 

true. 

   We have investigated the completeness of the operational semantics with 

respect to the generation of more restricted supported models54). Informally 

speaking and ignoring composite events, a Herbrand model M of a set of reactive 

rules R is supported if for every action in every acti in M there is an instance of a 

reactive rule in R of the form: 

 

  antecedent  early-consequents  action   other-consequents 
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such that antecedent  early-consequents is true in M. It is possible to show that, 

under certain conditions, the OS can generate all such supported models. These 

conditions include safety restrictions (allowedness or range-restriction) on R and 

L, to ensure that (except for time variables) candidate actions are ground when 

they are selected as candidates for execution in step 2.3 of the operational 

semantics.  

 

 

§7      Comparison with Other Work 
   LPS evolved from our attempts to reconcile and combine the reactive 

rules and destructive updates of production systems, active databases and BDI 

programming languages with the logical representations and semantics of logic 

programming, deductive databases and action/event theories in AI 

   An LPS framework <R, L, D> achieves this combination by using the 

logic programming semantics of L and D to define a model M whose purpose is to 

make the reactive rules R true. Because M is a model-theroretic structure, and 

not a theory, it can be constructed by using destructive updates, without losing 

its logical character. Because M contains the whole history of states and events, 

and because truth is defined for arbitrary sentences of FOL, the antecedents and 

consequents of rules in R can refer to complex events, generalizing the more 

restricted syntax of production systems, active database rules and BDI 

programming languages. 

 

7.1 Deductive Databases 
   The importance of acknowledging and exploiting the distinctive 

characters of reactive rules and logic programs was first drawn to our attention 

by the distinction made by Nicolas and Gallaire42) between deduction rules and 

integrity constraints in deductive databases. In LPS, logic programs can be 

viewed as deduction rules, and reactive rules can be viewed as integrity 

constraints. In deductive databases, the semantics of integrity constraints was 

the subject of considerable debate in the 1980s. 

  The two main views, to begin with, were the consistency view and the 

theorem-hood view. In the consistency view, an integrity constraint is satisfied if 

it is consistent with the completion of the database. In the theorem-hood view, it 

is satisfied if it is a theorem, logically entailed by the completion. For relational 

databases, the two views are equivalent to the standard view that a database 

satisfies an integrity constraint if it is true in the database regarded as a 

Herbrand model. The semantics of LPS extends this idea, to the notion that a set 

of reactive rules should be true in a Herbrand model determined by a sequence of 

states and events.  

  In recent years, the field of deductive databases has evolved into the field 

of Datalog, in which databases are represented by logic programs without 

function symbols. Datalog±8) extends Datalog with existential rules, having 

existentially quantified consequents. Existential rules are similar to reactive 
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rules in LPS, and can be viewed similarly as integrity constraints. However in 

Datalog±, existential rules contain only state conditions, and are used to answer 

queries in a single database state. In LPS, reactive rules contain both state 

conditions and events, and are used to monitor updates and generate sequences 

of database states. As a result, existential rules and reactive rules have different 

semantics, reflecting their different use.  

  In LPS, logic programs are used to generate a perfect model, with the aim 

of making the reactive rules true. Because, truth is defined for arbitrary 

sentences of FOL, reactive rules could in theory have the form of arbitrary 

sentences of FOL. In practice, the syntax of reactive rules is restricted, both for 

efficiency and to suit their intended use of generalizing the reactive rules of 

production systems, active databases, and BDI agent programming languages. 

  Similarly, because FOL-perfect models are constructed bottom-up in 

separate strata, state conditions in LPS, which are evaluated in lower strata, can 

also have arbitrary FOL syntax. The desirability of having such FOL state 

conditions was inspired in large part by transaction logic6), which uses FOL 

conditions in database transactions. Like LPS, transaction logic also employs 

destructive updates. But it employs a possible world semantics, in which the 

semantics of transactions is defined in terms of paths between possible worlds.  

 

7.2   Abductive Logic Programming 
   The distinction between logic programs and integrity constraints, which 

is the foundation for the distinction between logic programs and reactive rules in 

LPS, also underpins abductive logic programming23) (ALP). In ALP, a program 

consists of a triple <L, IC, A>, where L is a logic program, IC is a set of integrity 

constraints, and A is a set of “abducible” predicates, not defined by L. Given a 

goal G, which is an observation to explain or a state to achieve, the task is to 

generate a set  of ground atoms in the vocabulary of the abducible predicates 

such that L   solves G, and L   satisfies IC. Similarly to the case of 

deductive databases, different notions of solving a goal and satisfying an 

integrity constraint have been proposed. 

   In LPS, solving a goal G and satisfying reactive rules R are understood in 

the same way, as meaning that G  R is true in the FOL-perfect model of L  , 

where  represents a sequence of states and events.  Compared with other 

semantics for solving a goal and satisfying integrity constraints, this model-

theoretic semantics makes it possible for integrity constraints (and therefore 

both reactive rules and state conditions) to be arbitrary formulas of FOL, 

evaluated by using the standard definition of truth for sentences of FOL. 

 

7.3   Logic Programming Semantics 
   In LPS, logic programs L play a supporting role, used to define canonical 

models that make the reactive rules R true. In earlier papers, these models were 

the perfect models of locally stratified logic programs43). In this paper, we extend 

local stratification and perfect models to programs including FOL conditions, 
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and we prove soundness and the frame theorem for FOL-stratified logic 

programs. It would be interesting to extend the proofs to the more general case 

of well-founded models52), and to explore whether alternative sets of possible 

concurrent events could be represented by alternative stable models18). 

 

7.4   Agent Languages    
    LPS is a direct descendant of our work on ALP agents28), which embed 

ALP in the thinking component of a BDI-like agent45) cycle. In ALP agents, the 

logic program L represents the agent’s beliefs, and the goals and integrity 

constraints G  IC represent the agent’s goals (or desires). The database is 

updated by means of an event theory, which uses frame axioms. The ALP agent 

approach was developed further in the KGP agent model24, 38). In contrast with 

both ALP agents and KGP agents, the operational semantics of LPS employs a 

destructively updated database that represents the current state. 

    The destructive updates of LPS were inspired in part by their use in 

BDI-agent languages such as AgentSpeak44). In AgentSpeak, programs are 

collections of plans that have the form:  

 

     event E: conditions C  goals G and actions A.  

  

The event E can be the addition or deletion of a belief literal or a goal atom, 

stored in a database. The conditions C query the current state, and the goals G 

and actions A update the database by adding or deleting goals and beliefs. As a 

result, plans combine some of the functionality of both reactive rules and logic 

programs in LPS. However, they do not allow complex events in the event part 

of plans, and they do not include temporal constraints. Moreover, they do not a 

have a logical semantics. 

  A number of other authors have also developed agent languages and 

systems in a logic programming context. For example in both DALI10) and 

EVOLP7), events transform an initial agent logic program into a sequence of 

logic programs. ERA3) extends EVOLP by adding complex events, complex 

actions, and event-condition-action rules. The semantics of the evolutionary 

sequence of logic programs in DALI, EVOLP and ERA is given by an associated 

sequence of models. In LPS, this sequence is represented instead by a single 

model of a single logic program using timestamps. 

    FLUX50) is a constraint logic programming language for the design of 

intelligent agents that reason about their actions using the fluent calculus, in 

which states are represented as lists. Although it is claimed that updates are 

performed destructively, the list representation of states requires the explicit 

use of recursion both to query whether a fluent is a member of a state, and to 

delete the fluent if it is terminated by an action. In LPS, states are represented 

by sets of fluents, and membership and deletion are performed by associative 

look-up. In FLUX, states can be updated by sensing actions, but there seems to 

be no analogue of the reactive rules of LPS. 
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    Eiter et al.13) define an extension of logic programming in which the 

clauses represent the conditions under which actions are permitted, forbidden, 

obliged or waived. All reasoning takes place and is completed within a single 

iteration of the agent cycle. In the LPS cycle, reasoning can be interrupted both 

to assimilate events and to generate actions.  

   In contrast with approaches that map agent programs into logic 

programs, MetaTEM17) maps agent programs into temporal modal logic 

sentences of the form “past or present conditions imply present or future 

conclusions”. As in LPS, the computational task is to generate a model in which 

such agent programs are true. Unlike MetaTEM, which uses frame axioms for 

updating states and employs a possible world semantics, LPS uses an 

operational semantics with destructive updates and a semantics in which all 

states and events are combined in a single model. 
  
 

7.5   Active Databases 
    As pointed out by Bailey et al.4), although they differ in their intended 

applications and research communities, agent systems and active databases 

employ similar approaches to programming reactive systems. For example, 

event-condition-action (ECA) rules in active databases are similar to agent 

plans in BDI agents. Both active databases and BDI agents maintain a 

destructively updated database state, but lack a declarative semantics. 

    A number of researchers, working mainly in the deductive database 

area, have addressed the problem of developing a declarative, logic-based 

semantics for active databases. In the majority of these approaches ECA rules 

are mapped into logic programs. Zaniolo53), for example, uses a situation 

calculus-like representation with frame axioms, and reduces ECA rules to logic 

programs. Like Zaniolo53), Statelog34) uses a situation calculus-like 

representation with frame axioms, and gives ECA rules a logic programming 

semantics. Fernandes et al.15) also views ECA rules in terms of change of state, 

but uses the event calculus as the basis for an ECA language coupled with a 

deductive database. 

    LPS employs a similar model-theoretic semantics for state transitions, 

specified by the event theory ET. However, it differs from them in 

distinguishing between the semantics of logic programs and the semantics of 

reactive rules, and in employing destructive updates in the operational 

semantics. 

    Active databases are one way of implementing database updates. Other 

methods for updating deductive databases have also been explored and are 

summarized in the textbook by Abiteboul et al1). These methods perform 

destructive updates, but without giving them a logical semantics. In contrast, 

LPS, gives destructive updates the semantics of constructing a single canonical 

model in an attempt to make the reactive rules true. 

 

7.6 Production systems 
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    Arguably, production systems are the simplest kind of reactive system. It 

was the attempt to understand the difference and relationship between 

production rules and logic programming rules that eventually led to our 

development of ALP agents and LPS. Several other authors have made related 

attempts to provide production rules with a declarative semantics. 

     Raschid46), for example, maps production rules that add facts into logic 

programs, and production rules that delete facts into integrity constraints. She 

then transforms the resulting combination of logic programs and integrity 

constraints into normal logic programs, and uses the fixed point semantics of 

logic programming to perform forward chaining. Baral and Lobo5) translate 

production rules into the situation calculus represented as a logic program with 

the stable model semantics.  

 Recently, there has been a revival of work on implementing production 

systems in logic programming terms. For example, Damasio et al.11) use 

incremental Answer Set Programming (ASP) to realize different conflict 

resolution strategies for the RIF-PRD production system dialect. Eiter et al.14) 

simulate production systems in ASP with an interface to an external 

environment, performing state changes by updating and accessing the 

environment via action atoms and external atoms. Rezk and Kifer48) combine 

production rules and ontologies, using transaction logic.  

 In the majority of these approaches production rules are mapped into 

logic programs. In contrast, in the semantics of LPS, both logic programs and 

reactive rules have their own distinctive characters. 

 

7.7   Action and Event Theories in AI 
 The situation calculus40) and event calculus33) are among the most 

established formalisms for representing and reasoning about fluents, actions and 

other events in artificial intelligence. Golog35) extends the situation calculus with 

imperative programming language constructs, which are like composite actions 

in LPS. Although the semantics of Golog is expressed in second order logic, as 

Levesque et al.35) points out, in most practical cases composite actions in Golog 

can be translated into pure Prolog programs and can be given a minimal model 

semantics. This minimal model semantics is similar to the semantics of LPS. 

 The situation calculus, event calculus and Golog all employ frame axioms 

to reason about change. Destructive changes are not possible in these systems, 

because it is not possible to delete axioms in the middle of the proof of a theorem. 

In contrast in LPS, states and events are model-theoretic structures. As a 

consequence, they can be constructed piecemeal by means of destructive updates, 

without destroying any axioms used in a proof. 

 To the best of our knowledge, LPS is the only framework that combines 

destructive updates with a logic-based semantics. For example, although 

STRIPS16) uses destructive updates for planning, it does not have a logical 

semantics. On the other hand, all the action languages surveyed by Turner51) 

have a logical semantics, but use frame axioms in their operational semantics. 
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Moreover, none of these languages include any component similar to the reactive 

rules of LPS. 

 

7.8   Parallelism and Concurrency 
   LPS combines an AI approach to the representation of concurrent actions 

with a Linda-like use of a shared state as a coordination medium. The AI 

contribution comes from the use of the domain theory D, to reason about the 

combined effects of concurrent actions, in the spirit of Miller and Shanahan’s41) 

treatment in the event calculus. Recently, Khandelwal and Fox25) have 

extended Miller and Shanahan’s approach, to define the effects of multiple 

actions by using aggregate formulas in first-order logic. Our approach can be 

regarded as an approximation to theirs, and would benefit from a similar 

extension using aggregate formulas. 

   Our use of a Linda-like shared state to handle concurrency is similar to 

the approach of Dovier et al.12). In particular, our assumption that the 

environment non-deterministically decides which sets of possible concurrent 

events actually occur is similar to the use of a “supervisor” in Dovier et al.12), to 

arbitrate between the conflicting actions of different agents in the pursuit of 

different goals.  

  The explicit representation of time in LPS is similar to its use by Loo et 

al.37) and Hellerstein22) for programming distributed and parallel systems. 

Although frame axioms are represented explicitly in Hellerstein22), they are not 

used in the implementation, which uses instead “traditional storage technology 

rather than re-deriving tuples each timestep”. Our frame theorem can be 

regarded as justifying the use of such technology. 

 

7.9 State Transition Semantics of Algorithms 
   The semantics of LPS as a programming language builds upon the idea 

that logic programs can be understood both declaratively in logical terms, and 

imperatively as goal-reduction procedures. Arguably, this idea has had limited 

impact in Computing, largely because conventional imperative programming 

languages are mainly concerned with algorithms whose semantics are defined in 

terms of state transitions.   

   As Reisig47) puts it, an initialized, deterministic transition system is “a 

triple C = (Q, I, F) where Q is a set (its elements are denoted as states), I ⊆ Q 

(the initial states), and F : Q → Q (the next-state function)”. He advocates 

formalizing such systems by means of abstract state machines (ASM), but points 

out that, already in the first volume of The Art of Computer Programming26), 

Donald Knuth suggested state transition systems as a general semantics for 

algorithms. 

   ASMs formalize states as algebraic structures, which are like model-

theoretic structures consisting of objects and functions. States in ASMs are 

abstract, in the sense that they need not be defined symbolically. However, state 

transitions are defined by next-state functions represented in symbolic form, 
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typically by means of guarded assignment statements, which are like production 

systems in which all the rules that are triggered in a given state fire in parallel. 

   Compared with LPS, in which all states are combined into a single model, 

in ASM only the individual states are model-theoretic in character. Moreover, 

because programs consist of sets of guarded assignment statements, they have 

the same limitations, as productions systems, compared with LPS. 

   An LPS framework <R, L, D> is a reactive state transition system in 

which logic programs L and domain theories D play a supporting role to reactive 

rules R. Harel20) contrasts reactive systems with “transformational systems”, 

which transform inputs into outputs in a mathematically well-behaved manner. 

In contrast with transformational systems, reactive systems are “event-driven, 

continuously having to react to external and internal stimuli”. He further 

characterises them as being an extension of state transition systems, having the 

general form “when event  occurs in state A, if condition C is true at the time, 

the system transfers to state B”.  

  LPS can be viewed as an attempt to reconcile Harel’s two kinds of 

computational formalism, with reactive rules providing the reactive component, 

and logic programs providing structure for the “transformational” part. 

 

 

§8   Future Work 
   LPS has its origins in AI knowledge representation and reasoning 

systems, but for the sake of efficiency and to focus on the features required for 

more mainstream database and programming applications, the AI features have 

been deliberately restricted and simplified. For example, the abductive 

explanation of observations, which was one of the main motivations of ALP, has 

been deliberately left out. Similarly, the ability to perform preventative and 

proactive actions has also been deliberately left out.  

  There are two complementary directions for future work. One direction is 

to reintroduce into LPS some of the more powerful, but more expensive features 

of ALP agents. Such features might also include more expressive integrity 

constraints, bearing in mind that reactive rules are just a species of integrity 

constraint in ALP.  

  The other direction is to further restrict the framework to make it more 

efficient or to specialize it for particular application domains – for example, by 

restricting the use of function symbols, as in Datalog. This direction also 

includes further development of the operational semantics – for example to 

specify efficient strategies for executing composite events in the antecedents. 

  There is also a third direction, which combines the other two, by adding 

more powerful features for particular classes of applications. This includes 

extending the syntax of FOL conditions to include the use of aggregation 

operators and more complex kinds of composite events. 
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Appendix A  Sketch of the Proof of the Frame Theorem 6.2 
   We need to show that 

 

perfect(Dpost  L  S*  ev*) = perfect(ET  Dpost  L  S0*  ev*). 

 

The model perfect(ET  Dpost  L  S0*  ev*) can be constructed by partitioning 

the Herbrand base H of ET  Dpost  L  S0*  ev* into strata associated with 

the succession of time points 0, s(0), s(s(0)):  

 

H0 =   {holds(p, 0) |  p is an extensional fluent}  

   {a | a is an atom defined in Laux}  

   {happens(e, t, u) | e is a simple event and t and u are time points}  

For i  0,  H3i+1 = {holds(p, i) | p is an intensional fluent} 

H3i+2 =  {initiated(p, i+1) | p is an extensional fluent}  

   {terminated(p, i+1) | p is an extensional fluent}  

H3i+3 =  {holds(p, i+1) | p is an extensional fluent} 

 

The sets H0 and H3i+1 are themselves stratified: H0 is partitioned into strata 

corresponding to the stratification of Laux, and H3i+1 is partitioned into strata 

corresponding to the stratification of Lint.  

   Now, to proceed with the proof, note that  

 

     ground(ET)   = ET1  ET2  …  ETi ...  

     where ETi = {holds(p, i)  body  ground(ET)}. 

 

The theorem follows from the fact, which can be proved by induction on i, that 

for all i  0: 

 

     perfect(Dpost  L  S0*  S1* ... Si*  ev*) =   

     perfect(ET1  ET2  …  ETi  Dpost  L  S0*  ev*). 

 

Appendix B Sketch of the Proof of the Soundness Theorem 6.1 
   As a result of the frame theorem, soundness can be restated in the form: 

Given an LPS framework <R, L, D> and an initial state S0, where L and D are 

FOL-stratified, suppose for every set exti  of external events, where i > 0, the OS 

selects a set of concurrent events evi  =  exti  actsi  at step 0 of the ith iteration of 

the OS cycle. 

http://www.informatik.uni-trier.de/~ley/db/conf/bncod/bncod93.html#Zaniolo93
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   Then R  Dpre is true in perfect(Dpost  L  S*  ev*) if for every top-level 

goal clause C added in a goal state Gi, i ≥ 0, there exists a goal state Gj  such that 

i ≤ j and C is reduced to true in Gj. 

   To show that Dpre  is true in  perfect(Dpost  L  S*  ev*) it suffices to 

show that Dpre  is true in each  perfect(Dpost  L  Si-1*  evi*). But this is 

ensured by step 0 of the OS. 

   The proof that R is true in perfect(Dpost  L  S*  ev*) follows from the 

fact that the condition for soundness in the statement of the theorem mimics the 

definition of truth for reactive rules. In particular, a sentence in the form of a 

reactive rule X [antecedent  Y consequent] is true in a model, if whenever an 

instance of the antecedent becomes true the corresponding instance of the 

consequent becomes true. But whenever an instance of the antecedent becomes 

true, the corresponding instance of the consequent is added as a top-level goal 

clause C  to the current goal state Gi. The fact that the corresponding instance of 

the consequent becomes true is equivalent to there existing a goal state Gj  where 

i ≤ j and C is reduced to true in Gj.   
 

 


